联系我们 | 网站地图 | English | 中科院  
站内搜索:
研究队伍
 您现在的位置:首页 > 研究生教育 > 导师介绍 > 专家人才
姓 名:
王强
性    别:
职 务:
同位素地球化学国家重点实验室常务副主任
职    称:
研究员
学 历:
博士研究生
通讯地址:
广州市天河区科华街511号
电 话:
020-85290277
邮政编码:
510640
传 真:
020-85290130
电子邮件:
wqiang@gig.ac.cn

简历:

王强研究员,19711月生于湖北省当阳市,博士,岩石学专业,研究员、岩石学学科组组长、博士生导师,2010年获得国家杰出青年基金,2014年入选国家创新人才推进计划中青年科技领军人才 2015年入选中国科学院百人计划和广东特支计划中青年科技领军人才2016年入选国家万人计划。现任同位素地球化学国家重点实验室常务副主任,《Mineralogy and Petrology》、《Solid Earth Sciences》和《岩石学报》副主编,以及《Lithos》、《Tectonophysics》、《中国科学-地球科学》、《Journal of Earth Science》、《地球科学》等期刊的编委。已发表论文逾140篇,其中SCI论文逾100(第一和通讯作者论文逾60),论文SCI他引逾4000余次,h-index 40

  教育背景 

  1. 1989.09-1993.07,中国地质大学(武汉)地质系,获学士学位; 

  2. 1993.09-1995.07,中国地质大学(武汉)研究生院硕士研究生; 

  3. 1995.09-1998.07,中国地质大学(武汉)研究生院博士研究生,1998年获博士学位。 

  科研经历 

  1. 1998.07-2000.10,中国科学院广州地球化学研究所,博士后; 

  2. 2000.11-2004.11,中国科学院广州地球化学研究所,副研究员; 

  3. 2004.12,日本海洋科学与技术中心地球演化前沿研究所学习Re-Os同位素分析; 

  4. 2005.01-2005.12,在澳大利亚悉尼大学作访问研究; 

  5. 2006.01-2006.3,中国科学院广州地球化学研究所,副研究员; 

  6. 2006.04-现在,中国科学院广州地球化学研究所,研究员; 

  7. 2009.01-2009.07,澳大利亚Curtin大学地质系,高级访问学者; 

  8. 2009.12-2010.01,台湾大学地质系,高级访问学者 


研究领域:

主要从事岩浆岩岩石学、地球化学、地球动力学及相关成矿作用的研究,研究领域:(1)青藏高原岩浆作用、深部动力学与高原演化、隆升; 2)埃达克质岩及其共生岩石组合与铜金成矿;(3)华南岩浆作用与大陆再造、金属成矿;(4)中亚造山带岩浆作用与地壳生长、金属成矿。

社会任职:

获奖及荣誉:

1. 1996年,荣获研究生“IET

2. 1996年,荣获中国地质大学优秀学生标兵中国地质大学优秀研究生标兵称号,并获校友奖励基金;

3. 2007年,荣获第二届“Shen-Su Sun Award”(孙贤鉥奖)

4. 2008年,荣获第十二届侯德封矿物岩石地球化学青年科学家奖(侯德封奖)

5. 2009年,学术成果华南岩浆作用与地球动力学演化获广东省科学技术一等奖 (排名第二)

6. 2009年,荣获第七届青藏高原青年科技奖

7. 2011年,学术成果埃达克岩的成因与铜--钼成矿获广东省科学技术一等奖 (排名第5)

8. 2012年,荣获十一届中国科学院杰出青年荣誉称号;

9. 2012年,荣获中国共产党中国科学院广州分院、广东省科学院优秀共产党员称号;

10. 2012年,荣获中国科学院广东省教育基地优秀研究生导师称号;

11. 2013年,荣获2013年度中国科学院优秀研究生指导教师

12. 2015年,荣获中国科学院朱李月华优秀教师奖

13. 2016年,荣获第八届黄汲清青年地质科技奖”;

14.   2017年,入选国务院批准的享受政府特殊津贴人员名单。

代表论著:

1. Hao, L.L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia1, X. P., Ou, Q. 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subduction. Geophysical Research Letter, 45, doi: 10.1029/2018GL079061.

2. Hao, L.-L., Wang, Q.*, Zhang, C., Ou, Q., Yang, J.-H., Dan, W., Jiang, Z.-Q. 2018. Oceanic plateau subduction during closure of Bangong-Nujiang Tethys: Insights from Central Tibetan volcanic rocks. Geological Society of American Bulletin, 120, doi: 10.1130/B32045.1.

3. Wang, J., Wang, Q.*, Zhang, C., Dan, W.*, Qi, Y., Zhang, X.-Z., Xia, X.-P. 2018. Late Permian bimodal volcanic rocks in the northern Qiangtang Terrane, central Tibet: evidence for interaction between the Emeishan plume and the Paleo-Tethyan subduction system. Journal of Geophysical Research: Solid Earth, (in press), DOI:10.1029/2018JB015568.

4. Yang, Z. Y., Wang, Q.*, Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X.-P., Zhao, Z. H. 2018. Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: New insights into the genesis of highly evolved granites. Lithos, 312–313, 258–273. doi: 10.1016/j.lithos.2018.04.018.

5. Dan, W., Wang, Q., Zhang, X.-Z., Zhang, C., Tang, G.-J., Wang, J., Ou, Q., Hao, L.-L., and Qi, Y. 2018. Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean. Lithos, 308-309, 104-117.

6. Qi, Y., Gou, G.-N., Wang, Q.*, Wyman, D.A., Jiang, Z.-Q., Li, Q.-L., and Zhang, L. 2018. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane. Lithos, 302-303, 178-188, DOI: 10.1016/j.lithos.2017.12.021.

7. Wang, J., Gou, G.-N., Wang, Q.*, Zhang, C., Dan, W. *, Wyman, D.A., and Zhang, X.-Z., 2018. Petrogenesis of the Late Triassic diorites in the Hoh Xil area, northern Tibet: Insights into the origin of the high-Mg# andesitic signature of continental crust. Lithos, 300-301, 348-360, DOI: 10.1016/j.lithos.2017.12.007.

8. Dan, W., Wang, Q., White, W.M., Zhang, X.-Z., Tang, G.-J., Jiang, Z.-Q., Hao, L.-L., and Ou, Q., 2018, Rapid formation of eclogites during a nearly closed ocean: Revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau. Chemical Geology, 477, 112-122., DOI: 10.1016/j.chemgeo.2017.12.012.

9. Ma, L.*, Kerr, A.C., Wang, Q.*, Jiang, Z.Q., Hu, W. L. 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226, DOI: 10.1016/j.lithos.2017.11.023.

10. Wu, H., Qiangba, Z., Li, C., Wang, Q., Gesang, W., Ciren, O., and Basang, D. 2018. Geochronology and geochemistry of Early Cretaceous granitic rocks in the Dongqiao Area, Central Tibet: Implications for magmatic origin and geological evolution. The Journal of Geology, 126, 249-260, DOI: 10.1086/695702.

11. Ma, L.*, Wang, Q.*, Kerr, A.C., Yang, J.-H., Xia, X.-P., Ou, Q., Yang, Z.-Y., Sun, P. 2017. Paleocene (c. 62 Ma) Leucogranites in Southern Lhasa, Tibet: Products of Syn-collisional Crustal Anatexis during Slab Roll-back? Journal of Petrology, 58(11), 2089–2114, doi: 10.1093/petrology/egy001.

12. Ma, Y., Yang, T., Bian, W., Jin, J., Wang, Q., Zhang, S., Wu, H., Li, H., Cao, L., Yuan, H., and Ding, J. 2017. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows From the Lhasa Terrane and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 122, 8786-8809, DOI: 10.1002/2017JB014743.

13. Zhang, X.-Z., Wang, Q.*, Dong, Y.-S., Zhang, C., Li, Q.-Y., Xia, X.-P., and Xu, W. 2017. High-Pressure Granulite Facies Overprinting During the Exhumation of Eclogites in the Bangong-Nujiang Suture Zone, Central Tibet: Link to Flat-Slab Subduction. Tectonics, 36, 2918-2935, doi:10.1002/2017TC004774.

14. Tang, G.-J., Cawood, P. A., Wyman, D. A., Wang, Q., & Zhao, Z.-H. 2017. Evolving mantle sources in postcollisional early Permian-Triassic magmatic rocks in the heart of Tianshan Orogen (western China). Geochemistry, Geophysics, Geosystems, 18, 4110–4122. doi:10.1002/2017GC006977.

15.Tang, G.-J., Q. Wang, C. Zhang, D. A. Wyman, W. Dan, X.-P. Xia, H.-Y. Chen, and Z.-H. Zhao. 2017. Sr-Nd-Hf-O isotope geochemistry of the Ertaibei pluton, East Junggar, NW China: Implications for development of a crustal-scale granitoid pluton and crustal growth, Geochemistry Geophysics Geosystems, 18, 3340–3358, doi:10.1002/2017GC006998.

16. Huang, C.-C., Guo, H.-F., Li, J., Wang, Q.*, Zhang, C., Wyman, D., and Tang, G.-J. 2017. Re–Os isotope geochronology of the Shangbao pyrite–flourite deposit in southeastern Hunan, South China: Evidence for multiple mineralization events and the role of crust–mantle interaction in polymetallic deposits: Solid Earth Sciences, 2, 109-122, doi: 10.1016/j.sesci.04.001

17. Chen, B., Long, X., Wilde, S.A., Yuan, C., Wang, Q., Xia, X., and Zhang, Z. 2017. Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau. Lithos, 284-285, 709-729, DOI: 10.1016/j.lithos.2017.05.019.

18. Gou, G.-N., Wang, Q.*, Wyman, D.A., Xia, X.-P., Wei, G.-J., and Guo, H.-F. 2017. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling: Solid Earth Sciences, 2, 43-54, doi: 10.1016/j.sesci.2017.03.003.

19.Tang, G.-J., Wang, Q., Wyman, D.A., Chung, S.-L., Zhao, Z.-H. 2017. Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition. Journal Geophysical Research-Solid Earth, 122, 1934–1948, doi:10.1002/2016JB013678.

20. Tang, G.-J., Chung, S.-L., Hawkesworth, C.J., Cawood, P.A., Wang, Q., Wyman, D.A., Xu, Y.-G., Zhao, Z.-H. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters 464, 142–154, doi: 10.1016/j.epsl.2017.02.022.

21. Ou, Q., Wang, Q.*, Wyman, D. A., Zhang, H.-X.*, Yang, J.-H., Zeng, J.-P., Hao, L.-L., Chen, Y.-W., Liang, H., and Qi, Y. 2017. Eocene adakitic porphyries in the central-northern Qiangtang Block, centralTibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau. Journal of Geophysical Research—Solid Earth, 122, 1025–1053, doi:10.1002/2016JB013259.

22. He, Y., Wu, H., Ke, S., Liu, S.-A., and Wang, Q. 2017. Iron isotopic compositions of adakitic and non-adakitic granitic magmas: Magma compositional control and subtle residual garnet effect. Geochimica et Cosmochimica Acta, 203: 89-102.

23. Zhang, X.-Z.*, Dong, Y.-S., Wang, Q.*, Dan , W., Zhang, C., Xu, W., Huang, M.-L. 2017. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet. Geochemistry Geophysics Geosystems, 18, 266-279, DOI:10.1002/2016GC006576.

24. Ma, L., Wang, Q.*, Li, Z.-X., Wyman, D. A., Yang, J.-H., Jiang, Z.-Q., Liu, Y.-S., Gou, G.-N., Guo, H.-F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~ 35 Ma): insights from the Quguosha gabbros in southern Lhasa block. Gongwana Research, 41, 77–92, http://dx.doi.org/10.1016/j.gr.2016.02.005.

25. Wang, Q.*, Hawkesworth, C. J. *, Wyman, D., Chung, S.-L., Wu, F.-Y. Li, X.-H., Li, Z.-X., Gou, G.-N., Zhang, X.-Z., Tang, G.-J., Dan, W., Ma, L., Dong, Y.-H. 2016. Pliocene–Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 7:11888, doi: 10.1038/ncomms11888.

26. Hao, L.-L., Wang, Q.*, Wyman, D. A., Ou, Q., Dan, W., Jiang, Z.-Q., Yang, J.-H., Long, X.-P., Li, J. 2016. Partial melting of the mélange for the growth of andesitic crust indicated by the Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet. Geochemistry Geophysics Geosystems, 17, doi:10.1002/2016GC006248.

27. Hao, L.-L., Wang, Q.*, Wyman, D. A., Ou, Q., Dan, W., Jiang, Z.-Q., Wu, F.-Y., Yang, J.-H., Long, X.-P., and Li, J. 2016. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 245, 223-242, doi:10.1016/j.lithos.2015.1009.1015.

28. Dan, W.*, Li, X.-H., Wang, Q.*, Wang, X.-C., Wyman, D. A., and Liu, Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Research, 32105-121doi:10.1016/j.gr.2015.1002.1011.

29.  Zhang, X. Z.*, Dong, Y. S., Wang, Q.*, Dan, W., Zhang, C., Deng, M.R., Xu, W., Xia, X.P., Zeng, J.P. and Liang, H., 2016. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics, 35(7): 1670-1686.

30. Yan, H., Long, X., Wang, X.-C., Li, J., Wang, Q., Yuan, C., and Sun, M., 2016, Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang Ocean. Lithos, v. 264, p. 315-328.

31. Ma, L., Wang, Q.*, Wyman, D. A., Jiang, Z.-Q., Wu, F.-Y., Li, X.-H., Yang, J.-H., Gou, G.-N., Guo, H.-F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases. Journal of Geophysical Research, 120, 6159–6181doi: 10.1002/2015JB011966.

32. Dan, W. *, Wang, Q.*, Wang, X.-C., Liu, Y., Wyman, D. A., Liu, Y.-S. 2015. Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust–mantle interaction and implications for the generation of silicic igneous provinces. Lithos 230133–145.

33. Jiang, Z., Wang, Q.*, Wyman, D., Shi, X., Yang, J.-H., Ma, L., and Gou, G. 2015. Zircon U–Pb geochronology and geochemistry of Late Cretaceous–Early Eocene granodiorites in the southern Gangdese Batholith of Tibet: Petrogenesis and implications for geodynamics and Cu ± Au ± Mo mineralization. International Geology Review, 57(3), 373–392, DOI: 10.1080/00206814.2015.1009503.

34. Li, J., Wang, X.-C., Xu, J.-F., Xu, Y.-G., Tang, G.-J., Wang., Q. 2015. Disequilibrium-induced initial Os isotopic heterogeneity in gramaliquots of single basaltic rock powders: Implications for dating and source tracing. Chemical Geology 406, 10–17.

35. Long, X., Wilde, S. A., Wang, Q., Yuan, C., Wang, X.-C., Li, J., Jiang, Z., and Dan, W. 2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 414(0), 30-44.

36. Dan, W.*, Li, X.-H., Wang, Q.*, Wang, X.-C., Liu, Y., and Wyman, D. A. 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off. Precambrian Research, 254, 59–72, DOI: 10.1016/j.precamres.2014.1007.1024.

37. Guan, Y., Yuan, C., Sun, M., Wilde, S., Long, X., Huang, X., and Wang, Q. 2014. I-type Granitoids in the Eastern Yangtze Block: Implications for the Early Paleozoic Intracontinental Orogeny in South China. Lithos, 206-207, 34-51, DOI: 10.1016/j.lithos.2014.1007.1016.

38. Shen, X.-M., Zhang, H.-X., Wang, Q., Ma, L., and Yang, Y.-H. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251, DOI: 10.1016/j.lithos.2014.1007.1024.

39. Tang, G.-J., Chung, S.-L., Wang, Q., Wyman, D. A., Dan, W., Chen, H.-Y., and Zhao, Z.-H. 2014. Petrogenesis of a Late Carboniferous mafic dike–granitoid association in the western Tianshan: Response to the geodynamics of oceanic subduction. Lithos 202–203, 85-99.

40. Jiang, Z.Q., Wang, Q.*, Wyman, D. A., Li, Z. X., Yang, J. H., Shi, X.B., Ma, L., Tang, G. J., Gou, G. N., Jia, X. H., Guo, H. F., 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~ 91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos, 196-197, 213-231, doi: 10.1016/j.lithos.2014.03.001.

41.Ma, L., Wang, B. D., Jiang, Z. Q., Wang, Q.*, Li, Z. X., Wyman, D. A., Zhao, S. R., Yang, J. H., Gou, G. N., Guo, H. F., 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338, doi: 10.1016/j.lithos.2014.02.011.

42.Dan, W. *, Li, X. H., Wang, Q.*, Tang, G. J., Liu, Y., 2014. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: A magmatic flare-up triggered by a mantle-plume? Lithos, 204, 144-158, doi: 10.1016/j.lithos.2014.01.018.

43. Dan, W., Li, X.H., Wang, Q., Wang, X.C., Liu, Y., 2014. NEOPROTEROZOIC S-TYPE GRANITES IN THE ALXA BLOCK,WESTERNMOST NORTH CHINA AND TECTONIC IMPLICATIONS:IN SITU ZIRCON U-Pb-Hf-O ISOTOPIC AND GEOCHEMICAL CONSTRAINTS. American Journal of Science, 314, 110-153, DOI 10.2475/01.2014.04.

44. Huang Z.Y., Long X.P., Kr?ner A., Yuan C., Wang Q., Sun M., Zhao G.C., Wang Y.J., 2013. Geochemistry, zircon U–Pb ages and Lu–Hf isotopes of early Paleozoic plutons in the northwestern Chinese Tianshan: Petrogenesis and geological implications. Lithos 182-183, 48-66.

45. Tang, G.J., Wang, Q.*, Wyman, D.A., Sun, M., Zhao, Z.H., Jiang, Z.Q., 2013. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions. Journal of Asian Earth Science, 74, 113-128.

46. Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175–176, 315-332doi: 10.1016/j.lithos.2013.04.006.

47. Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. The early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos, 172–173, 17–30, 10.1016/j.lithos.2013.03.007.

48. Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology, 349–350, 54–70, 10.1016/j.chemgeo.2013.04.005.

49. Ali, K. A., Moghazi, A.K. M., Maurice, A. E., Omar, S. A., Wang, Q., Wilde, S. A., Moussa, E.M., Manton, W. I., Stern, R.J., 2012. Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt. International Journal of Earth Sciences, 101(7), 1705-1722, doi:10.1007/s00531-012-0759-2.

50.  Wang Q., Chung S.L., Li X.H., Wyman D., Li Z.X., Sun W.D., Qiu H.N., Liu Y.S., Zhu Y.T., 2012. Crustal melting and flow beneath northern Tibet: Evidence from Mid-Miocene to Quaternary strongly peraluminous rhyolites in southern Kunlun Range. Journal of Petrology, 53(12), 2523-2566, doi: 10.1093/petrology/egs058.

51. Tang, G.J., Wang Q.*, Wyman, D.A., Li, Z.X., Xu, Y.G., Zhao, Z.H. (2012) Metasomatized lithosphere-asthenosphere interaction during slab roll-back: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos, 155, 67–80doi: 10.1016/j.lithos.2012.08.015.

52. Wang Q., Li X.H ., Jia X.H ., Wyman D.A., Tang G.J., Li Z.X., Yang Y.H., Jiang Z.Q., Ma L, Gou G.N. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium–rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle, and magma hybridization. Chemical Geology, 328, 222–243, doi:10.1016/j.chemgeo.2012.04.029.

53. Jiang Z.Q., Wang Q.*, Li Z.X., Wyman D.A., Tang G.J., Jia X.H., Yang Y.H. 2012. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese belt (southern Tibet): Slab melting and implications for Cu-Au mineralization. Journal of Asian Earth Science, 53: 67-81, doi:10.1016/j.jseaes.2012.02.010.

54.Tang G..J., Wang Q.*, Wyman D.A., Li Z.-X., Zhao Z.-H., Yang Y.-H. 2012. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 140-141: 86–102, doi:10.1016/j.lithos.2012.01.025

55. Tang G..J., Wyman D.A., Wang Q.*, Li J., Li Z.X., Zhao ZH., Sun W.D. 2012. Asthenosphere–lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters 329-330, 84–96, doi:10.1016/j.epsl.2012.02.009.

56. Tang, G.J., Wang Q.*, Wyman D.A., Li Z.X., Xu Y.G., and Zhao Z.H., 2012. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granotoids in the western Junggar region, NW China. Lithos 128-131, 73-83, dio:10.1016/j.lithos.2011.11.003.

57.  Wang Q., Li Z.X., Chung S.L., Wyman D. A., Sun Y.L., Zhao Z.H., Zhu Y.T., Qiu H.N., 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 126(1-2), 54-67, doi: 10.1016/j.lithos.2011.06.002

58. Shen X.M., Zhang H.X., Wang Q., Wyman D.A., Yang Y.H., 2011. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of “A2-type” granites. Journal of Asian Earth Sciences 42(5), 986-1007, doi:10.1016/j.jseaes.2010.10.004.

59.  Wang Q., Wyman D.A., Li Z.X., Sun W.D., Chung S.L., Vasconcelos P.M., Zhang Q.Y., Dong H., YuY.S., Pearson N., Qiu H.N., Zhu T.X., Feng X.T., 2010. Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau upliftEarth and Planetary Science Letters, 298: 205–216, doi:10.1016/j.epsl.2010.07.046.

60. Wang Q., Wyman D.A., Li Z.X., Bao Z.W., Zhao Z.H., Wang Y.X., Jian P., Yang Y.H., Chen L.L., 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of supercontinent Rodinia. Precambrian Research, 178:185–208, doi:10.1016/j.precamres.2010.02.004.

61. Tang G.J., Wang Q.*, Wyman D.A., Li Z.X., Zhao Z.H., Jia X.H., Jiang Z.Q., 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology, 277: 281–300, doi:10.1016/j.chemgeo.2010.08.012.

62. Tang G.J., Wang Q.*, Wyman D.A., Sun M., Li Z.X., Zhao Z.H., Sun W.D., Jia X.H., Jiang Z.Q., 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): evidence for a tectonic transition from arc to post-collisional setting. Lithos, 119: 393–411, doi:10.1016/j.lithos.2010.07.010.

63. Zhao ZH, Wang Q, Xiong XL, Niu HC, Zhang HX, Qiao YL., 2009. Magnesian andesites in north Xinjiang, China. International Journal of Earth Science, 98:1325–1340.

64. Zhao ZH, Xiong XL, Wang Q, Bai ZH, Qiao YL, 2009. Late Paleozoic underplating in North Xinjiang: Evidence from shoshonites and adakites. Gondwana Research, 16: 216-226.

65.  Wang, Q., Wyman, D.A., Xu, J.F., Dong, Y.H., Vasconcelos, P. M., Pearson, N., Wan, Y.S., Dong, H., Li, C.F., Yu, Y.S., Zhu, T.X., Feng, X.T., Zhang, Q.Y., Zi, F., Chu, ZY. , 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272: 158-171, doi: 10.1016/j.epsl.2008.04.034.

66.  Wang Q., Wyman A., Xu J.F., Wan Y.S., Li C.F., Zi F., Jiang Z.Q., Qiu H.N., Chu Z.Y., Zhao Z.H., Dong Y.H., 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155:473–490. DOI 10.1007/s00410-007-0253-1.

67. Bao ZW, Wang Q, Bai GD, Zhao ZH, Song YW, Liu XM., 2008. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications. Chinese Science Bulletin, 53 (13): 2050-2061

68. Zhao, Z.H., Xiong, X.L., Wang, Q., Wyman, D.A., Bao, Z.W., Bai, Z.H., and Qiao, Y.L., 2008. Underplating-related adakites in Xinjiang Tianshan, China. Lithos, 102(1-2): 374-391.

69. Wang Q., Wyman A., Xu J. F., Jian P., Zhao Z. H., Li C.F., Xu W., Ma J. L., He B., 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636.

70. Wang Q., Wyman D.A., Zhao Z.H., Xu J.F., Bai Z.H., Xiong X.L., Dai T.M., Li C.F., Chu Z.Y., 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implication for Phanerozoic crustal growth of Central Asia Orogenic Belt. Chemical Geology, 236(1-2):42-64.

71.  Wang Q., Wyman D. A., Xu J. F., Zhao Z. H., Jian P., Zi F., 2007. Partial melting of thickened or delaminated lower crust in the middle of eastern China: implications for Cu-Au mineralization. The Journal of Geology, 115(2): 149-161.

72. Wang Q., Wyman D. A., Xu J. F., Zhao Z. H., Jian P., Xiong X. L., Bao Z.W., Li C. F., Bai Z. H., 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446.

73. Wang Q., Xu J. F., Jian P., Bao Z. W., Zhao Z. H., Li C. F., Xiong X. L., Ma J. L., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144.

74. Wang Q., Li J. W., Jian P., Zhao Z. H., Xiong X. L., Bao Z. W., Xu J. F., Li C. F., Ma J. L., 2005. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230(3-4): 339-354.

75. Wang Q., McDermott F., Xu J. F., Bellon H., Zhu Y. T., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower crustal melting in an intracontinental setting. Geology, 33(6): 465-468.

76. Wang Q., Zhao Z. H., Bao Z. W., Xu J. F., Liu W., Li C. F., Bai Z. H., and Xiong X. L., 2004. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei, east China. Resource Geology, 54(2): 137-152.

77. Wang Q., Xu J. F., Zhao Z. H., Bao Z. W., Xu W., and Xiong X. L., 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38(5): 417-434.

78. Xu Y. G., Huang X. L., Ma J. L., Wang Y. B., Iizuka Y., Xu J. F., Wang Q., Wu X. Y., 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology, 147: 750–767.

79. Zhao, Z H, Xiong X L, Wang Q, Bai Z H, Xu J F, and Qiao Y L., 2004. The Association of Late Paleozoic Adakitic Rocks and Shoshonitic Volcanic Rocks in Western Tianshan, China. Acta Geologica Sinica, 78(1): 68-72.

80. Wang Q., Zhao Z. H., Bai Z. H., Bao Z. W., Xu J. F., Xiong X. L., Mei H. J., Wang Y. X., 2003. Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, north Xinjiang: interactions between slab melt and mantle peridotite and implications for crustal growth. Chinese Science Bulletin, 48 (19): 2108-2115.

81. Wang Q., Zhao Z. H., Xu J. F., Li X. H., Bao Z. W., Xiong X. L., Liu Y. M., 2003. Petrologenesis and metallogenesis of the Yanshanian adakite-like rocks in the Eastern Yangtze Block, Science in China, Series D, 2003, 46(Supp): 164-176

82. Wang Q., Xu J. F., Zhao Z. H., Xiong X. L., Bao Z. W. , 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling Area, Anhui Province, China and constraint to Geodynamics process. Science in China, Series D, 46(8): 801-815.

83. Zhao Z. H., Xiong X. L., Wang Q., Bao Z. W., , 2003. Alkaline-rich igneous rocks and related large-super large gold-copper mineralization in China. Science in China, Series D, 46(Supp): 1-13.

84. Xiong X. L., Li X. H., Xu J. F., Li W. X., Zhao Z. H., Wang Q. and Chen X. M., , 2003. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal, 37: 233-252.

85. Liu Y. M., Xu J. F., Dai T. M., Li X. H., Deng X. G., Wang Q. , 2003. 40Ar/39Ar isotopic ages of Qianlishan granite and their geologic implications. Science in China, Series D, 2003, 46(Supp): 50-59.

86. Xu J. F., Shinjio R., Defant M. J., Wang Q., Rapp R. P. , 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology, 30: 1111-1114. 

87. Defant M. J., Xu J. F., Kepezhinskas P., Wang Q., Zhang Q., Xiao L. , 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2): 129-142.

88. Zhao Z. H., Xiong X. L., Han X. D., Wang Y. X., Wang Q., Bao Z. W. , 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36: 527-543.

89. Wang Q., Zhao Z. H., Qiu J. X., Wang R. J., Xu J. F., 2001. The Formation of Yanshanian granitic magma in Dabie Mountains: Dehydration or aquifer melting – with Tiantanzhai and Jiuzihe granites as examples. Continental Dynamics, 6(2): 39-47.

90. Xiong X. L., Zhao Z. H., Bai Z. H., Mei H. J., Wang Y. X., Wang Q., Xu J. F., Bao Z. W., 2001. Adakite-type sodium-rich rocks in Awulale Mountain of west Tianshan: Significance for the vertical growth of continental crust. Chinese Science Bulletin, 46(10): 811-817.

91. Xu J. F., Mei H. J., Yu X. Y., Bai Z. H., Niu H. C., Chen F. R., Zhen Z. P., Wang Q, 2001. Adakites related to subduction in the northern margin of Junggar arc for the Late Paleozoic: Products of slab melting, Chinese Science Bulletin, 46(15): 1312-1316.

92. Wang Q., Xu J., Wang J., Zhao Z., Qiu J., Wang R., Xiong X., Sang L., Peng L., 2000. The recognization of adakite-type gneisses in the North Dabie Mountains and its implication to ultrahigh pressure metamorphic geology. Chinese Science Bulletin, 45(21): 1927-1933.

93. Xu J. F., Wang Q., Yu X. Y., 2000. Geochemistry of high-Mg Andesite and Adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust and its implication. Geochemical Journal, 34:359-377.


承担科研项目情况:

1. 2017-2021, 国家基金委重点项目,青藏羌塘中部沱沱河新生代侵入岩的时空格架、成因及其形成的地球动力学过程”(41630208);

2. 2016-2020, 国家重点研发计划深地资源勘查开采课题,中国西部燕山运动及岩浆作用与成矿”(2016YFC0600407);

3. 2016-2020, 中国科学院前沿科学重点研究项目, “青藏高原中北部新生代陆内岩石圈演化”(QYZDJ-SSW-DQC026)

4. 2017-2019,广州市科技计划项目广州市花岗岩类地质遗迹形成过程和旅游地质学意义”.